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Abstract

The purpose of this paper is to estimate sharp bounds on treatment effects of ed-

ucation programs that ration excess demand by admission lotteries when selective

attrition cannot be ignored. Differential attrition arises in these models because stu-

dents that lose the lottery are more likely to pursue educational options outside the

school district. When students leave the district, important outcome variables are

often not observed. Selective attrition implies that treatment effects are not point

identified. We provide a new estimator that exploits known quantiles of the outcome

distribution to construct informative bounds on treatment effects. We apply our

methods to study the effectiveness of magnet programs in a mid-sized urban school

district. Our findings show that magnet programs help the district to attract and

retain students. The bound estimates demonstrate that magnet programs offered by

the district improve behavioral outcomes such as offenses, timeliness, and attendance.
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1 Introduction

The purpose of this paper is to estimate sharp bounds on treatment effects of ed-

ucation programs that ration excess demand by admission lotteries when selective

attrition cannot be ignored. Many school districts use lotteries to determine ac-

cess to over-subscribed educational programs. Lottery winners are accepted into the

program, with the ultimate choice of attendance left to the student and his family.

Lottery losers do not have the option to participate in the program, but have many

different outside options. As a consequence, lottery losers often decide to pursue

options outside of the traditional public school system and attend charter or private

schools. If educational outcomes are not observed for students that leave the school

system and attrition rates differ by lottery status, the randomization inherent in the

lottery assignment is not necessarily sufficient to identify meaningful treatment ef-

fects. Selective attrition may also arise when lottery winners that initially participate

in the program drop out because they experience unfavorable outcomes.

The starting point of our analysis is the insight that lotteries can be viewed as ex-

perimental designs with multiple sources of non-compliance that arise from parental

or student decisions. Since our application focuses on magnet programs, we develop

our methods in this context.1 We focus on two of the most important outside op-

tions: parents can send their children to a non-magnet program within the district

or they can leave the school district and send their children to a private school or

a public school in a different district. We model this behavior as non-compliance

with the intended treatment using five latent household types. It is useful to distin-

guish among these latent types since not all types of non-compliance lead to selective

attrition problems. We face different types of missing data problems for different

1The methods derived in this paper apply quite broadly to many different educational programs

such as charter schools and open enrollment policies.
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non-compliers.

The first type is a “complying stayer” that chooses the magnet program if it wins

the lottery. The second type is a “non-complying stayer” that does not choose the

magnet program even if it wins. Both of these types stay in the district regardless of

lottery outcome.2 The third and fourth types leave the district if they lose the lottery.

The third type is a “leaver” and will not enroll its child in the district independently of

the outcome of the lottery. The fourth type complies with the lottery and participates

in the magnet program if it wins the lottery and leaves if it loses. We denote these

households as “at risk,” since they are at risk of leaving the district. Given that many

urban school districts are experiencing declining enrollment, which affects funding and

district programs, this type is important from a policy perspective. Finally, there is

a fifth type, the “always takers,” that enrolls in the magnet option regardless of the

outcome of the lottery.

The household types are latent, i.e. unobserved by both the researcher and the

school district administrators.3 Differential attrition arises in this model due to the

presence of ”at risk” households for whom we do not observed educational outcomes

when they leave. We show how to identify and estimate the proportions of these

five latent types. We also characterize differences in observed characteristics among

these types. If the households that cause the differential attrition problem differ in

observed characteristics from the other latent types, one may also expect that they

differ in unobserved characteristics. Our approach thus allows us to characterize the

2The district offers a standard education program to all households that do not win the lottery.
3Comparing our approach to the one developed in Angrist, Imbens, and Rubin (1996), note

that we have two types of “never-takers” that we denote by “noncomplying stayers” and “leavers.”

Similarly, we have two types of “compliers” that we denote by “complying stayers” and “at risk”

households. The main difference arises because individuals have more than one outside option and

outcomes are not observed for “at risk” households that leave the district when they lose the lottery.

These two assumptions give rise to the differential attrition problem.
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extent of the differential attrition problem.

We then discuss how to estimate sharp bounds on the treatment effect of edu-

cational programs. The object of interest is the (local) average treatment effect for

complying stayers. It is well-known that the standard IV estimator is only consistent

if selective attrition can be ignored.4

If point identification is not feasible, researchers have typically relied on ”worst-

case” scenarios to construct bounds for treatment effects. Horowitz and Manski (2000)

provide a framework that exploits the assumption that the support of the outcome

variable is bounded. Lee (2009) has recently proposed the use of sample trimming

rules to construct more informative bounds. The basic idea of his estimator is to

assume that the marginal group that only participates because of the treatment is

either at the top of the bottom of the observed distribution. Our approach is in the

spirit of Lee’s, but uses known quantiles of the outcome distribution (test scores at

the state level) to create ”worst-case” scenarios. Our approach has the advantage

that it does not rely on a trimming rule which is helpful when samples are small

and power is an issue. Moreover, our estimator allows us to impose all orthogonality

conditions that arise from our model simultaneously which can result in significant

efficiency gains. This is exhibited by our empirical findings that show that our bound

estimates are typically tighter than the ones obtained from the Lee estimator.5

Our approach also explicitly deals with heterogeneity in treatment across differ-

ent schools (or job training centers, as in Lee.) Since estimation is not feasible for

4If there are two different types of compliers, the IV estimator does not identity a local average

treatment effect. A related paper is Heckman, Urzua, and Vytlacil (2006) who also consider multiple

unordered treatments with an instrument shifting agents into one of the treatments.
5There are two related papers that use bounding methods. Dinardo, McCrary, and Sanbonmatsu

(2006) develops a bounding method that requires an instrument for attrition. Blundell, Gossling,

Ichimura and Meghir (2007) develops bounds for the quantiles of the treatment distribution, rather

than using an extreme quantile of the outcome distribution to bound the average treatment effect.
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each school, researchers often pool data across schools. This creates an aggregation

problem in estimation. Our estimators deal with the aggregation problem that is

encountered when researchers have to pool among lotteries to deal with small sam-

ple problems. We show that flexible weighting schemes can be employed to estimate

meaningful weighted averages of the underlying mean treatment effects.

We apply the techniques developed in this paper to study the effectiveness of

magnet programs in a mid-sized urban school district. A second contribution of this

paper is that we provide new research to understand the causal effects of magnet

programs. While debates surrounding the effectiveness of other school choice options

such as charter schools and educational vouchers have attracted much attention from

researchers and policymakers, magnet programs have gotten less attention despite the

fact that they are much more prevalent than charter schools or educational voucher

programs.

Our findings show that magnet programs help the district to attract and retain

students. Approximately 25 percent of applicants to magnet programs that serve

K-5 students are “at risk.” Thus selective attrition poses an important problem for

the school district in our application. Households that selectively attrit come from

neighborhoods that have higher incomes and are more educated than households that

stay in the district regardless of the outcome of the lottery. These “at risk” households

have many options outside the public school system, but apparently they view the

existing magnet programs as desirable programs for their children. We also find that

the market for elementary school education is more competitive than the market for

middle and high school education. The fraction of households at risk declines with

the age of the students.

Our findings for achievement effects are mixed. While the point estimates of the

upper and lower bounds point to positive treatment effects, sample sizes are still

too small to provide precise estimates. This is largely the case because standardized
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achievement tests were only conducted in grades 5, 8, and 11 during most of our

sample period. For a variety of behavioral outcomes, we do not face these data

limitations. We find that our bounds analysis is informative and demonstrates that

magnet programs offered by the district improve behavioral outcomes such as offenses,

attendance, and timeliness.

Our paper is related to a growing literature that evaluates educational programs

using lottery based estimators.6 Lotteries were used by Rouse (1998) to study the

impact of the Milwaukee voucher program. Angrist, Bettinger, Bloom, King, and

Kremer (2002) also study the effects of vouchers when there is randomization in se-

lection of recipients from the pool of applicants using data from Colombia. Hoxby

and Rockoff (2004) use lotteries to study Chicago charter schools. Cullen, Jacob,

and Levitt (2006) have analyzed open enrollment programs in the Chicago Public

Schools. Ballou, Goldring, and Liu (2006) examine a magnet program. Hastings,

Kane, and Staiger (2008) estimate a model of school choice based on stated prefer-

ences for schools in Charlotte. Since school attendance was partially the outcome

of a lottery, they use the lottery outcomes as instruments to estimate the impact

of attending the first choice school. Abdulkadiroglu, Angrist, Dynarski, Payne, and

Pathak (2009) and Hoxby and Murarka (2009) study charter schools in Boston and

New York respectively and find strong achievement effects. Dobbie and Fryer (2009)

study a social experiment in Harlem and show that high-quality schools or high-

quality schools coupled with community investments generate the achievement gains.

All of these papers focus on applications in which selective attrition is not present

and thus do not explicitly deal with the key selective attrition problem discussed in

this paper.7

6Angrist (1990) introduced the use of lotteries to study the impact of military service on earnings.
7Angrist et al. (2002) encounter a related issue of selective test participation since students in

private schools are more likely to take college entrance exams than public school students.
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The rest of the paper is organized as follows. Section 2 develops our new methods

for estimation of treatment effects when program participation is partially determined

by lotteries and selective attrition cannot be ignored. We discuss identification and

estimation. Section 3 provides some institutional background for our application and

discusses our main data sources. Section 4 reports the empirical findings of our paper.

Finally, we offer some conclusions and discuss the policy implications of our work in

Section 5.

2 Identification and Estimation

2.1 The Research Design

We consider a design that arises when randomization determines eligibility to partic-

ipate in an educational program. Consider the problem of a parent that has to decide

whether or not to enroll a student in a magnet program offered by a school district.8

We only consider households that participate in a lottery that determines access to an

oversubscribed (magnet) program. Let W denote a discrete random variable which is

equal to 1 if the student wins the lottery and 0 if it loses. Let w denote the fraction

of households that win the lottery.

We assume that a student who wins the lottery has three options: participate

in the magnet program, participate in a different, non-magnet program offered by

the same school district, or leave the district and pursue educational opportunities

outside the district. A student who loses and is not an always-taker has only the last

two options. Let M be 1 if a student attends the (magnet) program and 0 otherwise.

Finally, let A denote a random variable that is 1 if a student attends a school in the

8We use the terms “parent” or “households” to describe the decision maker and “student” to

describe the person that participates in the program.
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district and 0 otherwise.

To model compliance with the intended treatment, we use five latent types to clas-

sify households into compliers and non-compliers. We make the following assumption.

Assumption 1

1. Let sm denote the fraction of “complying stayers.” These households will remain

in the district when they lose the lottery. If they win the lottery, they comply

with the intended treatment and attend the magnet school.

2. Let sn denote the fraction of “noncomplying stayers.” These households will

remain in the district when they lose the lottery. If they win the lottery, they

will not comply with the intended treatment and instead will attend a non-magnet

program in the district.

3. Let l denote the fraction of “leavers.” These are households that will leave the

district regardless of whether they are admitted to the magnet program.9

4. Let r denote the fraction that is “at risk.” These households will remain in the

district and attend the magnet program if admitted to the magnet program, and

they will leave the district otherwise.

5. Let at denote the fraction of “always takers.” They will attend the magnet school

regardless of the outcome of the lottery.

9Parents have incomplete information and need to gather information to learn about the features

of different programs. Parents have to sign up for lotteries months in advance. At that point, they

have not accumulated all relevant information. Once they have accumulated all relevant information,

they may decide to opt out of the public school system if their preferred choice dominates the program

offered by the district. In addition, household circumstances may change. For example, parents may

obtain a job that requires moving to a different metropolitan area. Note that there are typically no

penalties for participating in the lottery and declining to participate in the program.
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Since the household type is latent, one key empirical problem is identifying and esti-

mating the proportions of each type in the underlying population. These parameters

are informative about the effectiveness of magnet programs in attracting and retain-

ing households that participate in the lottery. Moreover, we will show that households

“at risk” cause the selective attrition problem.

The latent types of households are likely to differ in important characteristics

and we need to characterize these differences. If households “at risk” differ among

observed characteristics from the other latent types, one may also expect that they

differ by unobserved characteristics. As a consequence, ignoring the selective attrition

problem will be problematic. By characterizing the observed characteristics of all

latent types, we can thus gain some important insights into the potential importance

of the selective attrition problem.

To formalize these ideas, consider a random variable X that measures an observed

household characteristic such as income or socio-economic status. Appealing to our

decomposition, let µr, µsm , µsn , µl and µat denote the means of random variable

X conditional on belonging to group r, sm, sn, l, and at, respectively. The goal of

the first part of the analysis is then to identify and estimate the following eleven

parameters (w, r, sn, sm, l, a, µr, µsn , µsm , µl, µat).
10

The next objective is to study the effects of the program on student outcomes.

Let T be an outcome measure of interest, for example, the score on a standardized

achievement test. Following Fisher (1935), we adopt standard notation in the program

evaluation literature and consider a model with three potential outcomes:

T = A M T1 + A (1−M) T0 + (1− A) T2 (1)

where T1 denotes the outcome if the student attends the magnet school, T0 if he

attends a different program in the district, and T2 if he attends a school outside

10It is straightforward to allow X to be a vector.
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of the district.11 We will later assume that T is not observed for students that

do not attend a public school within the district, i.e. iT2 is not observed. This

assumption is plausible since researchers typically only have access to data from one

school district. Private schools rarely provide access to their confidential data and

often do not administer the same standardized tests as public schools. Attention,

therefore, focuses on the individual treatment effect ∆ = T1 − T0. Note that ∆

is unobserved for all students. Conceptually, we can define five different average

treatment effects, one for each latent group.12

ATEType = E[T1 − T0|Type = 1] Type ∈ {Sn, Sm, R, L,At} (2)

The key research question is then whether we can identify and estimate these types

of treatment effects when selective attrition is important. To answer this question,

we first discuss how to characterize the extent of the selective attrition problem. We

then derive bounds estimators for the relevant treatment effects.

2.2 Identification of the Fraction of Latent Types

First we need to establish the information set of the researcher.

Assumption 2 The researcher observes probabilities and conditional means for the

feasible outcomes shown in Table 1.

11This approach shares many similarities with the “switching regression” model introduced into

economics by Quandt (1972), Heckman (1978, 1979) and Lee (1979). Heckman and Robb (1985)

and Bjorklund and Moffitt (1987) treated heterogeneity in treatment as a random coefficients model.

It is also known in the statistical literature as the Rubin Model developed in Rubin (1974, 1978).

See also Heckman and Vytlacil (2007) for an overview of the program evaluation literature.
12There are other effects that may also be of interest such as treatment effect on the treated or

the marginal treatment effect. For a discussion see, among others, Heckman and Vytlacil (2005)

and Moffitt (2008).
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Table 1: Observed Outcomes

W M A Pr{W,M,A} E[X|W,M,A] = E[X|M,A]

I 1 1 1 w (r + sm + at)
rµr+smµsm+atµat

r+sm+at

II 1 1 0 not possible

III 1 0 1 w sn µsn

IV 1 0 0 w l µl

V 0 1 1 (1− w)at µat

VI 0 1 0 not possible

VII 0 0 1 (1− w) (sn + sm) snµsn+smµsm
sn+sm

VIII 0 0 0 (1− w) (r + l) rµr+lµl
r+l

Note that only six of the eight outcomes listed in Table 1 are possible since a student

attending a magnet program (M = 1) must also attend a public school (A = 1).

Identification can be established sequentially. First, we discuss identification of the

probabilities that characterize the shares of the latent types. We have the following

result.

Proposition 1 The parameters (w, r, sn, sm, l, a) are identified by the six non-

degenerate probabilities in Table 1.

Proof: Parameter w is the fraction that wins the lottery:

w = Pr(W = 1,M = 1, A = 1) + Pr(W = 1,M = 1, A = 0) (3)

+ Pr(W = 1,M = 0, A = 1) + Pr(W = 1,M = 0, A = 0)

Given w, sn is identified from (1,0,1):

sn = Pr(W = 1,M = 0, A = 1)/w (4)
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l is identified from (1,0,0):

l = Pr(W = 1,M = 0, A = 0)/w (5)

at is identified from (0,1,1):

at = Pr(W = 0,M = 1, A = 1)/(1− w) (6)

Given w and sn, sm is identified from (0,0,1):

sm = Pr(W = 0,M = 0, A = 1)/(1− w) − sn (7)

Given at, l, sn, and sm, r is identified of the identity:

r = 1− l − sm − sn − at (8)

Q.E.D.

Note that there is no over-identification at this stage since the six probabilities

in Table 1 add up to one, and the last three non-degenerate probabilities add up to

1− w.

Next we discuss identification of the five conditional means of household charac-

teristics. We have the following result.

Proposition 2 Given (w, r, sn, sm, l, at), the parameters (µr, µsm , µsn , µl, µat) are

identified by the observed conditional expectations observed in Table 1.

Proof: µl is identified from (1,0,0):

µl = E(X|W = 1,M = 0, A = 0) (9)

Similarly µsn is identified from (1,0,1):

µsn = E(X|W = 1,M = 0, A = 1) (10)

11



and µat is identified from (0,1,1):

µat = E(X|W = 0,M = 1, A = 1) (11)

Given µsn , µsm is identified from (0,0,1):

µsm = [(sn + sm)E(X|W = 0,M = 0, A = 1) − snµsn ]/sm (12)

Given µsm and µat , µr is identified from (1,1,1):

µr = [(r + sm + at)E(X|W = 1,M = 1, A = 1) − smµsm − atµat ]/r (13)

Q.E.D.

There is one over-identifying condition at this stage. This restriction arises due

to the condition that W is orthogonal to X.13 Propositions 1 and 2 then imply

that the parameters (w, r, sn, sm, l, at, µr, µsn , µsm , µl, µat) are identified. We can thus

study the effectiveness of magnet programs to attract and retain students. Moreover,

the fraction of households that are “at risk” is the key parameter that measures

the selective attrition between lottery winners and losers. We show this in the next

section.

2.3 Identification of Treatment Effects

We now turn to the analysis of identification of causal treatment effects of magnet

programs on educational and behavioral outcomes. We assume that the researcher

only observes outcomes, T , for students that remain in the school district, i.e. we do

not observe outcomes for “leavers” and “at risk” households that lose the lottery.

13The lotteries are assumed to be fair and blind in the sense that the district does not pre-select

winners and losers based on beliefs about attendance or any socio-economic or student characteristic

found in X.
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It is useful to assume initially that we observe the latent household type. Table

2 provides a summary of the relevant conditional expectations.14 Conditioning on

lottery outcomes, there are ten conditional expectations. Three of these pertain to

outcomes that are not observed since students in these latent groups leave the school

district (T2). The remaining seven conditional expectations relate to household types

that remain in the district.

Table 2: Mean Outcomes Conditional on Type

Complying Non-Complying Always

Stayers Stayers At Risk Leavers Takers

W = 1 E[T1|Sm = 1] E[T0|Sn = 1] E[T1|R = 1] E[T2|L = 1] E[T1|At = 1]

W = 0 E[T0|Sm = 1] E[T0|Sn = 1] E[T2|R = 1] E[T2|L = 1] E[T1|At = 1]

Note that T2 is never observed.

From Table 2, it is evident that even if we observed the latent types, there is

little hope in identifying ATESn , ATER, ATEL, or ATEAt . For stayers that never

attend the magnet program, we cannot identify E[T1|Sn = 1]. For students at risk,

we cannot identify E[T0|R = 1]. For leavers, we can neither identify E[T1|L = 1] nor

E[T0|L = 1]. For always-takers we never observe E[T0|At = 1]. Without imposing

additional assumptions on the selection of students into latent groups, ATESn , ATER,

ATEL and ATEAt are not identified. Attention, therefore, focuses on identification

of ATESm . Note that ATESm would be identified if types were not latent. Of course,

household types are not observed and as a consequence identification of ATESm is

14Note that we are implicitly assuming that the mean performance of stayers who would decline

lottery admission is the same whether they win or lose the lottery, i.e. E[T0|Sn = 1,W = 1] =

E[T0|Sn = 1,W = 0] = E[T0|Sn = 1].
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not straightforward. One key result of this paper is that the local average treatment

effect for compliers is not point identified if there is selective attrition.

Proposition 3

If there is selective attrition (r 6= 0) and if households that are at risk have different

expected outcomes than compliers in the treated case (E[T1|Sm = 1] 6= E[T1|R = 1]),

then the local average treatment effect for compliers, ATESm, is not identified.

Proof:

We only observe mean outcomes for the students conditional on W , M and A. For

students who win the lottery and attend the magnet school, we observe

E[T |W = 1,M = 1, A = 1] =
smE[T1|Sm = 1] + rE[T1|R = 1] + atE[T1|At = 1]

sm + r + at
(14)

For students who lose the lottery and attend the magnet school, we observe

E[T |W = 0,M = 1, A = 1] = E[T1|At = 1] (15)

We also observe mean performance of stayers who lose the lottery:

E[T |W = 0,M = 0, A = 1] =
smE[T0|Sm = 1] + snE[T0|Sn = 1]

sm + sn
(16)

Finally, we also observe the mean performance of stayers who win the lottery and

decline to enroll in the magnet program:

E[T |W = 1,M = 0, A = 1] = E[T0|Sn = 1] (17)

Equations (16) and (17) imply that we can identify E[T0|Sm = 1] and E[T0|Sn = 1],

since sn and sm have been identified before. Equation (15) implies that we can identify

E[T1|At = 1]. However, equation (14) then implies that we cannot separately identify

E[T1|Sm = 1] and E[T1|R = 1]. Q.E.D.
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Proposition 3 illustrates that attrition per se is not the problem. If the fraction

of “at risk” households is negligible (i.e., r = 0), identification is achieved even if the

fraction of leavers is large.15 The lack of point identification arises from the “at risk”

households which cause the selective attrition problem. Selective attrition is only a

problem if “at risk” households have different mean outcomes than compliers.16

Since point identification is no longer feasible when selective attrition is not neg-

ligible, attention focuses on set identification and the construction of bounds.17

Proposition 4

i) Suppose we have an upper bound, denoted by T u1 , for E[T1|R = 1] i.e. T u1 satisfies

E[T1|R = 1] ≤ T u1 . We can then construct a lower bound for the E[T1|Sm = 1] and

ATESm.

ii) Suppose we have a lower bound, denoted by T l1, for E[T1|R = 1], i.e. T l1 satisfies

E[T1|R = 1] ≥ T l1, we can then construct an upper bound for the E[T1|Sm = 1] and

ATESm.

Proof:

Consider the first part of the statement. Equation (14) then implies that:

E[T1|Sm = 1]

15Recall that if r = l = 0 our research design simplifies to the one considered in Angrist, Imbens

and Rubin (1996).
16We can generalize Proposition 3 by assuming that E[T1|Sm = 1, X] 6= E[T1|R = 1, X], i,e,

by conditioning on some observables X. If controlling for selection on observables is sufficient to

deal with the selection problem, a matching approach can be justified. For a discussion of matching

estimators, see, among others, Rosenbaum and Rubin (1983), Heckman, Ichimura, and Todd (1997),

and Abadie and Imbens (2006).
17Point identification cannot be achieved in many econometric applications. In that case, attention

naturally shifts to characterizing informative bounds on the parameters of interest. See, for example

Manski (1997), Horowitz and Manski (2000) Imbens and Manski (2004), Chernozhukov, Imbens,

and Newey (2006), and Lee (2009).
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=
sm + r + at

sm
E[T |W = 1,M = 1, A = 1]− rE[T1|R = 1] + atE[T1|At = 1]

sm

≥ sm + r + at
sm

E[T |W = 1,M = 1, A = 1]− rT u1 + atE[T1|At = 1]

sm
(18)

where the last inequality follows from E[T1|R = 1] ≤ T u1 . Since all terms in the last

line of equation (18) are identified, we conclude that we can construct a lower bound.

Replacing T u1 with T l1 and reversing the inequality yields the upper bound. Q.E.D.

There are many ways of constructing both lower bounds or upper bounds depend-

ing on the outcome variable and the application. For example, a plausible assumption

for the construction of an upper bound of the mean treatment effect is that the ”at

risk” households are at least as good as the compliers, T l1 = E[T1|Sm = 1] ≤ E[T1|R =

1].

A better approach that we explore in this paper is to bound outcomes using

known percentiles of the outcome distribution. These type of aggregate distributions

are often available in applications in education at the state level, as we discuss in

detail in the next section.

Alternatively, we can apply the trimming approach suggested by Lee (2009). This

approach is applied in our context by first ordering magnet students from lowest to

highest performance on the outcome variable being studied. Then treatment observa-

tions are dropped from the sample based both on the proportions of missing data in

the control and treatment groups and the distribution of the outcome variable being

bounded.

We have thus seen that selective attrition implies that we have to focus on the

construction of bounds since point identification is not feasible. It is therefore impor-

tant to have a simple test to determine whether r is zero. If we cannot reject the null

hypothesis that r = 0, treatment effects are point identified and can be estimated
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using standard linear IV estimators. A simple way to estimate r is to regress Ai on

Wi. The slope coefficient in that regression is equal to r. At minimum, researchers

that work with lottery data in educational applications should run this regression and

test whether one of the key identifying assumptions of the IV estimator is valid. If

we reject the null that r is equal to zero, the bounds analysis suggested in this paper

is more appropriate than IV estimation.

2.4 A GMM Estimator

Suppose we observe a random sample of N applicants to an education program, in-

dexed by i. We view these as N independent draws from the underlying population

of all applicants to this program. Let Wi,Mi, Ai, and Xi now denote the random vari-

ables that correspond to observation i. The proofs of identification are constructive.

Replacing population means by sample means thus yields consistent estimators for

the parameters of interest. Nevertheless, it is useful to place the estimation problem

within a well defined GMM framework. This allows us to estimate simultaneously all

parameters and compute asymptotic standard errors. We can estimate the fractions

of each latent type based on moment conditions derived from the choice probabilities

in Table 1. Define:

f1(Ai,Mi,Wi) =



1
N

∑N
i=1

[
WiMiAi − w(r + sm + at)

]
1
N

∑N
i=1

[
Wi(1−Mi)Ai − w sn

]
1
N

∑N
i=1

[
Wi(1−Mi)(1− Ai)− w l

]
1
N

∑N
i=1

[
(1−Wi)MiAi − (1− w) at

]
1
N

∑N
i=1

[
(1−Wi)(1−Mi)Ai − (1− w)(sn + sm)

]
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and note that E[f1(Ai,Mi,Wi)] = 0. Similarly we can estimate the mean character-

istics of each type. Define:

f2(Ai,Mi,Wi, Xi) =



1
N

∑N
i=1

[
WiMiAiXi − w[rµr + smµsm + atµat ]

]
1
N

∑N
i=1

[
Wi(1−Mi)AiXi − w sn µsn

]
1
N

∑N
i=1

[
Wi(1−Mi)(1− Ai)Xi − w l µl

]
1
N

∑N
i=1

[
(1−Wi)MiAiXi − (1− w)at µat

]
1
N

∑N
i=1

[
(1−Wi)(1−Mi)AiXi − (1− w)[snµsn + smµsm ]

]
1
N

∑N
i=1

[
(1−Wi)(1−Mi)(1− Ai)Xi − (1− w)[rµr + lµl]

]
and note that E[f2(Ai,Mi,Wi)] = 0. Finally, we can construct additional orthogo-

nality conditions to construct both upper and lower bounds. Consider first the case

of estimating an upper bound for compliers, denoted by E[T u1 |Sm = 1], by setting the

lower bound for E[T1|R = 1] to the 5th percentile of the observed outcome distribu-

tion, denoted by T l1. Define:

f3(Ai,Mi,Wi, Ti) =



1
N

∑N
i=1

[
TiWiMiAi − w(smE[T u1 |Sm = 1] + rT l1 + atE[T1|At = 1])

]
1
N

∑N
i=1

[
Ti(1−Wi)MiAi − (1− w)atE[T1|At = 1]

]
1
N

∑N
i=1

[
Ti(1−Wi)(1−Mi)Ai − (1− w)(smE[T0|Sm = 1] + snE[T0|Sn = 1])

]
1
N

∑N
i=1

[
TiWi(1−Mi)Ai − wsnE[T0|Sn = 1]

]
and we have E[f3(Ai,Mi,Wi)] = 0. Similarly, we can construct an orthogonality

condition for the lower bound if we use the 95th percentile outcome for T u1 . This

value comes from state level data for test scores and from our sample of non-missing

data for all other outcomes. Combining all orthogonality conditions, we can estimate

the parameters of the model using a GMM estimator (Hansen, 1982). Note that

the estimator above easily generalizes to the case in which X is a vector of random

variables. We simply stack all orthogonality conditions to obtain a simultaneous es-

timator. The main advantage of the GMM framework is that we can estimate all

parameters jointly by imposing all relevant orthogonality conditions. Moreover it

is straightforward to obtain standard errors for the upper and lower bounds using
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a GMM framework. Many of the parameters of the model – especially all param-

eters that characterize the fraction of latent types – can be estimated using linear

estimators.18 We find in the application that imposing the additional orthogonality

conditions that model the mean characteristics of the types (f2(Ai,Mi,Wi, Xi) above)

yields significant efficiency gains.

Thus far we have considered the problem of estimating causal effects using data

from one lottery. In practice, researchers often need to pool data from multiple

lotteries to obtain large enough sample sizes. We discuss in detail in Appendix A of

this paper the problems that are encountered when aggregating across lotteries. Using

a suitable weighting procedure, we show that we can estimate weighted averages of

the underlying parameters of the model. Weights can be chosen in accordance to the

objectives of the policy or decision maker.

3 Data

Our application focuses on magnet programs that are operated by a mid-sized urban

school district that prefers to not be identified. Magnet schools emerged in the United

States in the 1960’s. Magnet schools are designed to draw students from across normal

attendance zones. In contrast, a feeder school typically only admits students that

live inside the attendance zone. As a consequence, the composition of feeder schools

reflects residential choices of parents and is largely driven by the composition of local

neighborhoods. Magnet schools were thus initially used as a way to reduce racial

segregation in public schools.

More recently, magnet programs have been viewed as attractive options to in-

crease school choice, to retain students with better socio-economic backgrounds in

18An appendix is available upon request which shows exactly how to set up the linear estimators.
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public schools, and to increase student achievement. In some cases, magnet programs

are housed in separate schools. But they can also be a program within a more com-

prehensive school. Magnet programs offer specialized courses or curricula. There

are magnet programs for all grade levels in our district. We only consider magnet

programs that are academically oriented. These magnet programs typically provide

specialized education in mathematics, the sciences, languages, or humanities. Other

magnet programs have a broader focus on topics such as international studies or

performing arts.

Every academic year, interested students submit applications for one magnet pro-

gram of their choice. Some magnet programs in the district have a competitive en-

trance process, requiring an entrance examination, interview, or audition. We do not

include these magnet programs in this study since the admission procedure does not

use randomization. Instead we focus on magnet programs that do not have competi-

tive entrance procedures. If the number of applications submitted during registration

for any magnet program exceeds the number of available spaces, the district holds a

lottery to determine the order in which applicants will be accepted.

In the case of over-subscription, a computerized random selection determines each

student’s lottery number. The lottery is binding in the sense that students with lower

numbers are accepted, and higher numbered students are rejected. There is a clear

cut-off number that separates the groups. We do not observe students attending

magnet schools that lose the lottery, i.e. there are no “always-takers” in our sample.

To preserve racial balance in the magnet programs, separate lotteries are held for

black students and other students. Some programs also have preferences for students

with siblings already attending the magnet programs or for students who live close to

the school. Separate lotteries are held for those students with an acceptable preference

category for each magnet program. All in all, each lottery is held for a given program,

in a given academic year, separately by race, and, finally, separately by preference
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code.

Lottery winners (lotteried-in) have the option to participate in the magnet pro-

gram, with the ultimate choice of participation left to the student and his family.

Lottery losers (lotteried-out) do not have this option, and thus must make their

schooling choice without the availability of the magnet option. When winners decline

admission, the students on the wait list become eligible. Again the rank on the wait

list is determined by the original lottery. With a fair and balanced lottery, the winners

and losers will be determined by chance, thus creating two groups that are similar to

each other both on observable and unobservable characteristics.

The district granted us access to its longitudinal student database. We use data

from the 1999-2000 school year through 2005-2006. In addition to demographic data,

the database contains detailed information about educational outcomes. This infor-

mation is linked to each student by a unique ID number. The demographic char-

acteristics for the students include race, gender, free/reduced lunch eligibility, and

addresses.19 Using the addresses, we can assign census tract level variables to each

student. We use two community characteristics that measure the socio-economic

composition of the neighborhoods in which students reside. Poverty is the percentage

of adults in the student’s census tract with an income level below the poverty line.

Education is the percentage of adults in the student’s census tract with at least a

college degree.

As pertaining to student educational outcomes, the database includes the school

of attendance in each year and standardized scores for the state assessment tests.

In addition, we observe a variety of behavioral outcome measures such as offenses,

suspensions, and absences. The database also contains the outcomes of the magnet

lotteries. One of the key features of the database is that it contains unusually good

19The race variable is one if a student is African American and zero otherwise. The gender variable

is one for girls and zero for boys.

21



Table 3: Descriptive Statistics

Variable Entire Sample

(2054 obs)

Elem School

(820 obs)

Middle School

(457 obs)

High School

(777 obs)

Gender 0.51

(0.50)

0.51

(0.50)

0.51

(0.50)

0.51

(0.50)

Race 0.75

(0.44)

0.59

(0.49)

0.79

(0.40)

0.88

(0.32)

FRL 0.33

(0.47)

0.33

(0.47)

0.35

(0.48)

0.32

(0.47)

Poverty 0.23

(0.14)

0.22

(0.14)

0.23

(0.14)

0.24

(0.15)

Education 0.29

(0.19)

0.34

(0.22)

0.28

(0.18)

0.25

(0.14)

Offenses 0.99

(2.23)

0.18

(0.99)

1.15

(2.32)

1.67

(2.71)

Suspension Days 1.88

(4.71)

0.29

(1.62)

1.97

(4.39)

3.32

(6.17)

Absences 13.28

(14.56)

8.74

(7.96)

10.30

(8.54)

19.30

(19.30)

Tardies 7.31

(13.10)

3.94

(7.03)

8.66

(12.89)

9.70

(16.55)

Win Percentage 61.8 52.1 53.2 77.1
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information about students residing in the district that attend private, charter, and

home schools. Unfortunately, we do not observe test scores or behavioral outcome

measures for students outside of the district. Table 3 shows descriptive statistics for

the entire sample used in this study as well as three important sub-samples that we

also consider in estimation.20 We only consider binding lotteries in this research.

In total, over the time frame of the data, there are 173 binding lotteries with 1,269

students lotteried-in and 785 students lotteried-out.

Before we implement the estimators, we check whether the lotteries are balanced

on student observables. While assignment within lotteries may be random, partic-

ipation in a lottery is not. To make use of within-lottery randomness and not the

between-lottery non-randomness, we perform a check for balance by running a lottery-

fixed effect regression for each observable characteristic as a dependent variable with

acceptance as the only independent variable other than the fixed effects. Separate

lotteries are held by race, so race is left out of the balance analysis. We test every

other observable student characteristic in the data set.

Following Cullen et al. (2006) we use equation (19) to determine whether the

lottery is balanced:

Xi = β1Wi +
J∑
j=1

Iijβ2j + vi (19)

where Xi is the observable characteristic of interest, Wi is a dummy equal to 1 if

student i wins lottery j, Iij is an indicator variable equal to 1 if student i participated

in lottery j, and vi is the error term.21 We estimate a separate regression for each

observable. The coefficient β1 determines the fairness of the lottery system. If we

20For a small sample of students we imputed absences and tardies. Also note that outcome

variables are not observed for students that leave the district. Thus the means of the outcome

variables in Table 3 reflect means of stayers.
21Alternatively we could use multivariate Behrens-Fisher type test statistics which require less

restrictive assumptions. See, for example, Kim (1992).
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Table 4: Lottery Balance Result

Variable Entire Sample Elem School Middle School High School

Gender 0.0053

(0.0262)

0.0366

(0.0384)

-0.0183

(0.0559)

-0.0257

(0.0469)

FRL 0.0056

(0.0229)

0.0111

(0.0322)

-0.0501

(0.0482)

0.0385

(0.0431)

Poverty -0.0050

(0.0068)

-0.0023

(0.0092)

0.0044

(0.0136)

-0.0160

(0.0135)

Education 0.0041

(0.0078)

0.0110

(0.0127)

-0.0038

(0.0165)

-0.0007

(0.0125)

cannot reject the null hypothesis that it is equal to zero, then acceptance into a

magnet is not determined by the value of that particular student observable, X.

The first column of Table 4 shows the results when all students in all binding

lotteries are included in the regressions. β1 is not significant for any tested variable

at 10 %. The second and third columns consider the three sub-samples of interest.

The second column includes all students in elementary school while the third column

focuses on middle school students and the fourth on high school students. We find

that the estimates of β1 are not significantly different from zero. We thus find that

the lotteries are fair, creating separate winner and loser groups that are similar in

observed characteristics. Any differences between winners and losers are small and

statistically insignificant. This holds for the overall population in binding lotteries

and for the smaller sub-samples that were tested.
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4 Empirical Results

4.1 Attraction, Retention and Selective Attrition

To study the importance of selective attrition in our sample, we implement a number

of different estimators. First, we use a GMM estimator that only imposes the orthog-

onality conditions that identify the fraction of latent household types. Then we add

the orthogonality conditions that capture the mean characteristics of the types. The

characteristics include race, gender, free or reduced lunch, poverty, and college educa-

tion. Recall that the last two measures are based on neighborhood characteristics as

reported by the U.S. Census. We report estimates for three samples which include all

students that applied to an oversubscribed magnet program that is associated with

an elementary school (ES), middle school (MS), and high school (HS), respectively.

We pool across all lotteries in each sample and, therefore, use the weighted estimator

discussed in Appendix A. Tables 5 and 6 report the point estimates and estimated

standard errors for each of the three samples.

Comparing the estimates in the upper and lower panels of Table 5 clearly allows

us to evaluate whether there are efficiency gains that arise when using a GMM esti-

mator.22 We find that there are significant efficiency gains in the estimates of two key

parameters, the fraction of compliers and the fraction at risk. Estimated standard

errors are up to 50 percent larger when one ignores the additional orthogonality con-

ditions. We thus conclude that our approach of jointly estimating the model using

GMM is preferable to simpler methods.

Table 5 reveals some interesting new insights into the importance of selective

attrition in our application. Recall that the fraction of households at risk is the

22This comparison is also interesting since the GMM estimates and associated standard errors in

the upper panel are identical to the results that could be obtained using simpler linear estimators.
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Table 5: Empirical Results: Selective Attrition

First Set of Orthogonality Conditions

Fraction Fraction Fraction Fraction

At Risk Stay, Attend Stay, Non Leave

ES 0.25 (0.04) 0.61 (0.05) 0.06 (0.01) 0.08 (0.01)

MS 0.12 (0.15) 0.60 (0.16) 0.24 (0.04) 0.04 (0.01)

HS 0.15 (0.09) 0.70 (0.09) 0.08 (0.01) 0.06 (0.01)

First and Second Set of Orthogonality Conditions

Fraction Fraction Fraction Fraction

At Risk Stay, Attend Stay, Non Leave

ES 0.25 (0.04) 0.61 (0.04) 0.06 (0.01) 0.08 (0.01)

MS 0.12 (0.05) 0.61 (0.06) 0.24 (0.04) 0.04 (0.01)

HS 0.14 (0.06) 0.72 (0.06) 0.08 (0.01) 0.06 (0.01)

Estimated standard errors are reported in parentheses.

key parameter that captures selective attrition. We find that selective attrition is

substantial and ranges between 12 and 25 percent across our three samples. We also

find that the majority of students will stay in the district regardless of the outcome

of the lottery. The majority, 61 to 71 percent, will attend the magnet program if they

win they lottery. The fraction of households that will leave the district regardless of

the outcome of the lottery ranges between 4 and 8 percent. Overall, these results

suggest that most households consider the magnet programs desirable. We conclude

that magnet programs are effective tools for attracting and retaining households and

students.

Equally interesting are the observed mean characteristics of the latent types of

households reported in Table 6. These and the ones reported in the lower part of Table
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Table 6: Empirical Results: Characteristics

Gender

At Risk Stay, Attend Stay, Non Leave

ES 0.57 (0.09) 0.47 (0.03) 0.55 (0.11) 0.47 (0.08)

MS 0.85 (0.34) 0.43 (0.06) 0.50 (0.08) 0.31 (0.13)

HS 0.55 (0.34) 0.57 (0.05) 0.49 (0.08) 0.41 (0.08)

Race

At Risk Stay, Attend Stay, Non Leave

ES 0.50 (0.09) 0.70 (0.04) 0.39 (0.11) 0.18 (0.07)

MS 0.99 (0.41) 0.80 (0.05) 0.80 (0.06) 0.28 (0.14)

HS 0.89 (0.41) 0.93 (0.03) 0.85 (0.07) 0.79 (0.06)

FRL

At Risk Stay, Attend Stay, Non Leave

ES 0.12 (0.04) 0.43 (0.03) 0.19 (0.07) 0.07 (0.04)

MS 0.26 (0.15) 0.47 (0.06) 0.26 (0.09) 0.07 (0.06)

HS 0.15 (0.11) 0.39 (0.04) 0.25 (0.06) 0.12 (0.05)

Poverty

At Risk Stay, Attend Stay, Non Leave

ES 0.21 (0.03) 0.23 (0.01) 0.20 (0.04) 0.14 (0.01)

MS 0.24 (0.10) 0.24 (0.02) 0.23 (0.02) 0.13 (0.02)

HS 0.28 (0.12) 0.25 (0.01) 0.24 (0.02) 0.19 (0.02)

Education

At Risk Stay, Attend Stay, Non Leave

ES 0.40 (0.05) 0.29 (0.02) 0.41 (0.05) 0.53 (0.04)

MS 0.20 (0.11) 0.29 (0.02) 0.30 (0.03) 0.55 (0.08)

HS 0.27 (0.14) 0.25 (0.01) 0.21 (0.02) 0.36 (0.03)

Estimated standard errors are reported in parentheses.
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5 are the results from the first and second set of orthogonality conditions (f1 and f2).

For each characteristic, the differences across household types (at risk, leavers, stayers)

are statistically significant. We find that ”at risk” households are on average less likely

to be African American and on free or reduced lunch programs than households that

are stayers. Moreover, they come from better educated neighborhoods.23 These

differences are more pronounced at the elementary school level where the fraction

of ”at risk” households is the greatest. We thus conclude that magnet programs

are effective devices for the school district to retain more affluent households. Not

surprisingly, the leavers are the most affluent group and come from neighborhoods

with the highest levels of education. These households may just apply to the magnet

programs as a back-up option in case their students should unexpectedly not be

admitted to an independent, charter, or parochial school.24

The demographic differences, summarized above, between ”at risk” students and

”stayers” drive our assumptions on the bounds. Poor minority students are known

to perform poorly in school compared to wealthier majority peers (Dobbie and Fryer,

2009). Therefore, our upper bound estimation assumes that the ”at risk” students

are only as good as the ”stayers,” while the lower bound estimation assumes that the

at risk students are in the 95th percentile of the outcome distribution.

Table 6 also permits interesting comparisons across grade levels. Elementary and

middle school lotteries are somewhat more competitive than high school lotteries.

The former have average win rates of 52 percent and 53 percent respectively while the

latter have an average win rate of 77 percent. Elementary programs attract a clientele

from more highly educated neighborhoods. The fraction of African American families

is also lower among applicants to elementary school lotteries. Not surprisingly, we

23Note that the differences in household characteristics are statistically significant from zero at all

conventional levels.
24It could also be that these households left the district because of job transfers or other issues

unrelated to schools.
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find that the fraction of at risk families and the fraction of leavers is also higher

among elementary school students. These findings highlight the fact that, among

the magnet school applicants, the market for elementary school education is more

competitive than the market for high school education.

4.2 Treatment Effects

We have seen in the previous section that the fraction of “at risk” households is

large and significantly different from zero in our application in all three samples.

Moreover, households that are “at risk” of leaving the district have more favorable

socio-economic characteristics than other types except for ”leavers”. As a conse-

quence, we conclude that selective attrition cannot be ignored in this application.

Since treatment effects are only set-identified when selective attrition matters, we im-

plement our bounds estimators. We implement our bounds estimators by adding the

orthogonality conditions for these variables to the conditions, discussed in Section 4.1,

for estimating the proportions of latent types and the demographic characteristics of

latent types. For comparison purposes, we also report the IV estimates that ignore

selective attrition.

We start our analysis by focusing on achievement effects. The main problem

encountered in this part of the analysis arises due to missing data. This is largely the

case because standardized achievement tests were only conducted in grades 5, 8, and

11 during most of our sample period. For our middle school sample, there are only 155

observations for which we have test scores. For the high school sample, the reduction

is of similar magnitude.25 Including households that participate in the lotteries but

subsequently leave the district gives us with 213 middle school students and 203 high

25Moreover we find some evidence that lower performing students are more likely to drop out of

the sample, perhaps because they drop out of school.
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school students. Table 7 summarizes our main findings using standardized test scores

in reading and mathematics as outcome variables.

Table 7: Empirical Results: Achievement

Reading Mathematics

Upper Bound Lower Bound IV Upper Bound Lower Bound IV

ATESm ATESm ATESm ATESm ATESm ATESm

MS 66.25 3.68 139.71 180.89 91.08 138.56

(118.30) (172.69) (77.33) (124.89) (183.69) (63.63)

HS 77.05 -25.09 81.97 87.09 -24.22 94.30

(64.79) (136.24) (47.17) (57.62) (148.00) (40.70)

Estimated standard errors are reported in parentheses.

We find that the point estimates of the upper and lower bounds point to positive

treatment effects, but sample sizes are too small to provide precise estimates. While

few people would advocate the use of the simple IV estimator in the presence of

selective attrition, it is useful to compare the results of our bounds analysis with

the IV approach. One surprising finding is that the simple IV estimates suggest

statistically significant positive treatment effects. Our bounds analysis reveal that

this inference is not correct.

We next turn our attention to behavioral outcomes measured one year after the

lotteries were conducted.26 The main advantage of studying these outcomes is that we

do not face the data limitations that we encounter with test scores. Comprehensive

records of four important behavioral measures are available: suspensions, offenses,

26Previously Cullen et al. (2006) and Imberman (2010) have studied behavioral outcomes when

examining school choice programs.
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Table 8: Empirical Results: Behavioral Outcomes

Offenses Suspensions

Upper Bound Lower Bound IV Upper Bound Lower Bound IV

ATESm ATESm ATESm ATESm ATESm ATESm

ES -0.28 -0.26 -0.26 -0.49 -0.45 -0.47

(0.09) (0.09) (0.09) (0.15) (0.15) (0.14)

MS -0.62 -0.48 -0.66 -0.22 0.00 -0.56

(0.36) (0.36) (0.35) (1.17) (1.18) (0.77)

HS -0.03 0.28 0.20 -0.47 0.14 0.03

(0.34) (0.39) (0.31) (0.87) (0.93) (0.75)

Absences Tardies

Upper Bound Lower Bound IV Upper Bound Lower Bound IV

ATESm ATESm ATESm ATESm ATESm ATESm

ES -2.26 0.98 -1.70 -0.95 0.52 -0.98

(0.90) (1.24) (0.77) (0.73) (0.87) (0.59)

MS 1.98 4.16 1.82 3.04 4.97 2.32

(1.60) (2.02) (1.36) (1.82) (2.07) (2.07)

HS -8.64 -5.35 -7.77 -7.90 -6.61 -9.41

(3.32) (3.60) (2.55) (2.78) (2.87) (2.45)

Estimated standard errors are reported in parentheses.
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absences, and tardies.

Table 8 summarizes our main findings. Note that a negative treatment effect is a

reduction in undesirable behavior and thus a good outcome. For elementary students,

we find that magnet programs significantly reduce offenses and suspensions. There

are no measurable effects on tardies and absences. We find that there are few signif-

icant treatment effects at the middle school level. The estimates themselves suggest

that middle school magnet programs have a negative effect on offenses, no effect on

suspensions, and possibly an increase in absences and tardies. Again, however, these

estimates at the middle school level are generally not significant. For the high school

sample, we find strong evidence that the magnet schools reduce absences and tardies

while having no significant effects on offenses or suspensions. Comparing the IV esti-

mates with the bounds, we find that the IV estimates are often of similar magnitude

to our upper bound estimates and have smaller estimated standard errors than the

bound estimates.

We thus conclude that our bounds analysis is informative and demonstrates that

magnet programs offered by the district improve behavioral outcomes. In particular,

we find that offenses are signicantly lower for elementary school students, while high

school students have significantly better attendance and timeliness records. It is also

important to note that the 95th percentile of all the behavioral outcomes is zero.

Thus our lower bound estimates for all behavioral outcomes is the most pessimistic

possible, since it attributes flawless behavior to all who leave the district.

4.3 Comparison with the Lee Estimator

The main alternative to our estimator is the one proposed by Lee (2009) that relies on

trimming to construct an estimator for the lower and upper bounds of the treatment

effect. It is, therefore, useful to compare both approaches using the data from our
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application. Table 9 compares our estimates with those obtained from Lees trimming

method.27 As we detail in the appendix, weighting is appropriate when estimating

bounds using data from multiple lotteries. In implementing Lees estimator, we do not

weight lotteries by number of applicants.28 Hence, the comparison in Table 9 reflects

both a difference in the approach to bounding as well as a difference in weighting,

potentially confounding the two effects. For the outcomes considered in Table 9, we

have confirmed that the results from our weighted estimator are similar to those when

we do not weight by lotteries. This is not always the case, however. For example, for

MS reading, weighting by lotteries proves to be quite important.29 Hence, it would

be desirable in future work to extend the Lee estimator to weight lotteries. The two

methods could then be compared on a common footing in applications with multiple

lotteries.

Table 9 suggests that the empirical results are similar, but there is at least one

noteworthy difference. We find that our estimator provides tighter bounds estimates

for the magnet treatment effects than the one proposed in Lee (2009) in this appli-

cation. Table 9 also reports the trimming proportions p̂ for Lee’s estimator for all

outcomes. Note that p̂ is the trimming proportion and is defined just as in Lee’s

paper. The TE CI is the treatment effect confidence interval.

We find that the trimming rates are much greater in our application than in

Lees application, where p̂ = 0.068. This is due to the fact that our proportion

27The results are similar for other outcomes analyzed in this paper. The four outcomes were

chosen for the following reason. We have a large sample for elementary school offenses. Our point

estimates suggest that the magnet schools may reduce offenses. For tardies, our estimates suggest

no effect. The sample size for high school math is small and our estimates suggest no significant

treatment effect. Finally, the sample for middle school math is also small, but our estimates suggest

that there may be a positive treatment effect.
28Lees estimator has not yet been extended to estimate bounds when combining data from multiple

lotteries, though it is surely possible to do so.
29Details are available on request.
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Table 9: Comparison with Lee Estimator

Our Estimator Lee’s Estimator

ES Offenses UB : -0.28 (0.09) UB : -0.33 (0.08) [347]

LB : -0.26 (0.09) LB : -0.27 (0.08) [357]

Point Estimate Range : 0.02 Point Estimate Range : 0.06

Simple TE CI : [-0.46 , -0.08] Simple TE CI : [-0.49 , -0.11]

p̂ = 0.337

ES Tardies UB : -0.95 (0.73) UB : -3.58 (0.58) [217]

LB : 0.52 (0.87) LB : -0.68 (0.74) [306]

Point Estimate Range : 1.47 Point Estimate Range : 2.90

Simple TE CI : [-2.38 , 2.23] Simple TE CI : [-4.72 , 0.77]

p̂ = 0.362

HS Math UB : 87.09 (57.62) UB : 243.69 (301.97) [33]

LB : -24.22 (148.00) LB : -150.83 (252.33) [33]

Point Estimate Range : 111.31 Point Estimate Range : 394.52

Simple TE CI : [-314.30 , 200.03] Simple TE CI : [-645.40 , 835.55]

p̂ = 0.660

MS Math UB : 180.89 (124.89) UB : 382.86 (286.89) [45]

LB : 91.08 (183.69) LB : 65.11 (243.81) [48]

Point Estimate Range : 89.81 Point Estimate Range : 317.75

Simple TE CI : [-268.95 , 425.67] Simple TE CI : [-412.76 , 945.16]

p̂ = 0.426
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of non-missing data between the control and treatment groups differs significantly

since we never observe outcomes for those who leave the district. These students are

exclusively contained in the control group since nobody can be in a magnet program

yet outside of the district. The other main difference between our application and

Lee’s application is sample size. Lee reports over 3000 observations in the treatment

group before and after trimming. These sample are much larger than the ones in our

application. Trimming can, therefore, lead to small sample estimation problems in

some applications.

5 Conclusions

We have considered a research design that arises when randomization is used to de-

termine access to oversubscribed programs offered by public school systems. We have

developed a new empirical method which deals with selective attrition. Our approach

classifies potential participants as stayers, always-takers, leavers, and those that are at

risk. We show that the last type of households causes the selective attrition problem.

These ”at risk” households are also most interesting from a policy perspective since

the decision to remain in public schooling crucially depends on the outcome of the

lottery. If selective attrition matters, point identification of local average treatment

effects for compliers cannot be established. Instead we show how to construct and

estimate informative bounds.

We have applied our new methods to study the effectiveness of magnet programs.

Our empirical results suggest that selective attrition cannot be ignored in our ap-

plication. We find that magnet programs are useful tools that help the district to

attract and retain students from middle class backgrounds. Finally, we have also

studied the impact of magnet programs on achievement and a variety of behavioral

outcomes. Our findings for achievement effects are mixed. While the point estimates
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of the bounds point to positive treatment effects, sample sizes are too small to provide

precise estimates. For a variety of behavioral outcomes, we do not face these data

limitations. Our evidence suggests that magnet programs often improve behavioral

outcomes.

We believe that the techniques discussed in this paper can be extended and applied

to variety of different problems. Chan and Hamilton (2006), for example, consider

clinical AIDS trials and show that attrition is prevalent. Dinardo et al. (2006) show

that attrition is also a problem in the Moving To Opportunity randomized experi-

ment. The techniques developed in this paper can be applied to study these types of

questions as well.
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A Aggregation

For a given magnet program, a separate lottery is conducted for each grade, and,

within grade, separate lotteries may be conducted for different groups of applicants

(e.g, by race). In such cases, sample sizes for individual lotteries may be relatively

small, yielding lottery-specific estimates with low power. While outcomes for a par-

ticular lottery may be of interest, a district will typically be more concerned with

evaluation at the program level rather than at the lottery level. Here we extend our

analysis to permit investigation at the program level.

Suppose there are j = 1, ..., J lotteries governing access to a magnet program.

A program may be a magnet school (or perhaps set of magnet schools) serving a

particular range of school grades. Let wj be the probability of winning lottery j, and,

analogously to our previous notation, let at,,j, `j, rj, sm,j, and sn,j be the proportions

of latent types in lottery j. Let Nj be the number of applicants to lottery j and

N = ΣjNj. The share of lottery j is then nj = Nj/N . Extending our previous

notation, Wij equals 1 if applicant i to lottery j wins and 0 otherwise, Aij equals 1

if applicant i to lottery j attends a school in the district and 0 otherwise, and Mij

equals 1 if applicant i to lottery j attends magnet school j and 0 otherwise..

Let w = Σjnjwj, at = Σjnjat,j, ` = Σjnj`j, sm = Σjnjsm,j, sn = Σjnjsn,j, and

r = Σjnjrj. Thus, w, at, `, r, sm, and sn are parameters denoting the share of each of

the latent types at the program level. Our previous analysis applies to each lottery,

establishing identification of at,,j, `j, rj, sm,j, and sn,j for all j. The nj are known

and non-random. Hence, w, at, `, r, sm, and sn are identified. We therefore focus on

estimation and inference at the program level. Consider the following:

1

N

J∑
j=1

Nj∑
i=1

Wij(1−Mij)Aij
wj

→
J∑
j=1

njsn,j = sn (20)

Proceeding analogously for other latent types, we obtain the orthogonality condi-
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tions below for estimating program-level parameters:

1

N

N∑
i=1

Wi1

n1

− w1

.

.

1

N

N∑
i=1

WiJ

nJ
− wJ

1

N

J∑
j=1

Nj∑
i=1

WijMijAij
wj

− (r + sm + at) (21)

1

N

J∑
j=1

Nj∑
i=1

Wij(1−Mij)Aij
wj

− sn

1

N

J∑
j=1

Nj∑
i=1

Wij(1−Mij)(1− Aij)
wj

− l

1

N

J∑
j=1

Nj∑
i=1

(1−Wij)MijAij
(1− wj)

− at

1

N

J∑
j=1

Nj∑
i=1

(1−Wij)(1−Mij)Aij
(1− wj)

− (sn + sm)

Next, consider achievement. Let E[T1,j|Sm,j = 1] denote the expected test score of

a student who wins the lottery for program j and is a complying stayer. For simplicity

let at = 0. Note that

1

Nj

Nj∑
i=1

TiWjiAjiMji → wj {rjE[T1j|Rj = 1] + smjE[T1j|Sm,j = 1]} (22)

Using the same logic above and pooling over lotteries implies that:

1

N

J∑
j=1

1

wj

Nj∑
i=1

TiWjiAjiMji →
J∑
j=1

nj {rjE[T1j|Rj = 1] + smjE[T1j|Sm,j = 1]} (23)

Now suppose we have an upper bound U for E[T1j|Rj = 1] for all j, i.e. U ≥

E[T1j|Rj = 1] ∀j. Hence:

J∑
j=1

njrjE[T1j|Rj = 1] ≤
J∑
j=1

njrjU = rU (24)
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Combining equations (23) and (24) and normalizing by sm, we have

1

sm

J∑
j=1

njsmjE[T1j|Sm,j = 1] ≥ 1

sm

 1

N

J∑
j=1

1

wj

Nj∑
i=1

TiWjiAjiMji − r U

 (25)

Hence we have constructed a lower bound for the weighted average of the treatment

effect. Note that the weights depend on nj and smj.

Using a lower bound L such that L ≤ E[T1j|Rj = 1] ∀j, yields an upper bound

for the weighted treatment effect.
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