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Abstract

Critics of school choice argue that cream-skimming will worsen outcomes for those
left behind in public schools, a dynamic that relies on a substantial degree of within-
school heterogeneity. Since “high quality” families may have already sorted themselves,
or may represent a small fraction of the total, this paper will examine whether existing
within-school heterogeneity leaves any scope for cream-skimming to operate. The first
empirical section shows that the assumptions made by simulation studies over-estimate
within-school heterogeneity by at least 20% to 40%, thus inflating the cream-skimming
effect. The second empirical section asks, “given the current level of within-school
heterogeneity, how strong would peer effects have to be to significantly worsen outcomes
for those left behind?”. In order for cream skimming to lower math test scores by
a decile, the peer effect would have to be larger than the effect of converting both
parents from college graduates to high-school dropouts. In order for cream skimming
to substantially worsen dropout rates or college attendance rates, the peer effect would
have to be two to three times larger than the strongest estimated predictor of these
outcomes. The required peer effects would be smaller, but still unreasonably large, if
family types started from a uniform distribution. These results indicate that current
levels of within-school heterogeneity are so low that peer effects would have to be
unrealistically strong to give cream skimming any bite.
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1 Introduction

1.1 Overview

School-choice skeptics argue that cream-skimming will worsen outcomes for those left behind
in public schools. This dynamic assumes a substantial degree of within-school heterogeneity.
Actual within-school heterogeneity may be lower than assumed, for two reasons. First,
ex-ante sorting among schools may result in relatively homogenous schools. Second, even
if all types were spread uniformly, choice-induced sorting will have little effect on school
composition if “high-quality” types represent a small share of the total.

This paper uses real-world data to examine within-school heterogeneity, and the cor-
responding scope for cream-skimming. It first lays out a mathematical framework for de-
composing the cream-skimming effect into i) the difference between “stayers” and “leavers”,
ii) the share who leave, and iii) the strength of the peer effect. It shows that (i) and (ii) are
increasing in within-school heterogeneity. The paper then evaluates a common assumption
made by popular cream-skimming simulations: that the public sector consists of one large
school. By artificially inflating within-school heterogeneity, this assumption exaggerates both
the differences between leavers and stayers, and the share of students who would leave. This
leads to an over-estimation of the cream-skimming effect. Moreover, the synthetic distri-
butions of peer quality used in simulations will further exaggerate cream-skimming if their
variances are over-estimated.

Rather than attempting to estimate peer effects directly, the second empirical section
asks, “given existing levels of within-school heterogeneity, how large would peer effects have
to be to substantially impact those left behind?” Families are synthetically sorted according to
binary measures of their peer quality. Since many schools start with few high-quality families,
even perfect out-sorting produces minor changes in school composition. As a result, the
effect of each high-quality peer would have to be unrealistically large to produce substantial
achievement effects. For example, even after sorting out every parent who had a BA or
high income, just to change test scores by one or two points, the peer effect would have to
be as large or larger than the effect of converting both parents from college graduates to
high-school dropouts. In order for cream skimming to substantially worsen dropout rates or
college attendance rates, the peer effect would have to be two to three times larger than the
strongest estimated predictor of these outcomes.

The same analysis is repeated assuming that “high-quality” families are distributed uni-
formly across all schools. The required peer effects are smaller, but still generally larger
than any other predictor of outcomes. This suggests that within-school heterogeneity is too
small to facilitate cream-skimming, both because “high quality” families are unequally dis-
tributed, and because there are too few “high-quality” families to substantially affect school
composition.

These results inform the ongoing policy debate over school choice and voucher plans.
If within-school heterogeneity was large enough to facilitate a strong cream-skimming ef-
fect, choice plans would be harmful. It appears, however, that cream-skimming simula-
tions have substantially over-estimated within-school heterogeneity. Moreover, since “high-
quality” families make up a small share of the total, and since those families have already
engaged in sorting, the cream-skimming downside to enhanced choice seems limited.



1.2 Background

Recently, the debate over school choice programs has focused on the general equilibrium
effects - how would students remaining in their original schools be affected? To greatly
oversimplify, the GE dynamics can be broken into two opposing effects: a competition effect
(which improves the schools that face competition), and a cream-skimming effect (which
leaves the “stayers” worse off).

When considering the cream skimming effect, two distinct branches of the literature pro-
vide conflicting predictions. The first strand of literature points to evidence for positive peer
spillovers in education. In such an environment, the sorting of “good” families out of their
existing schools (adverse sorting) reduces welfare for those left behind, and perhaps reduces
welfare overall. Models in the adverse sorting literature tend to have similar characteristics.
First, they assume a distribution of families over some set of attributes, such as income, abil-
ity, and possibly taste for education. Second, educational quality is modeled as a function of
school inputs and average peer quality. Some models also address the housing market, and
the effects of voter composition on public school funding. Epple and Romano (1998) is one
of the best examples of the adverse sorting/cream-skimming literature. In addition to peer
effects and a distribution over ability and income, their model allows private schools to price-
and admission-discriminate based on ability. They find that those remaining in the public
sector tend to be low-ability students, who are left significantly worse off by a voucher sys-
tem. Caucutt (2002) uses another model with peer effects and private school discrimination
to find roughly similar results. She shows that the largest welfare gains accrue to wealthy
or high-ability families, and that aggregate welfare gains are decreasing in the strength of
the peer effect. Other studies incorporating cream-skimming into a model of school choice
include Manski (1992) and Adnett et al (2002).

The Tiebout (1956) theory, in which people sort themselves into local communities based
on preferences for local public goods, suggests different implications for cream-skimming. To
the extent that public-good preferences are correlated with factors like income and education,
Tiebout sorting will lead to greater variance across communities than within communities.
In this setting, much of the possible sorting has already taken place, even before a choice plan.
Other studies have incorporated peer effects (critical to the cream-skimming argument) into
this framework. In a model presented by De Bartolome (1991), peer effects actually increase
within-community heterogeneity, nullifying the gains from Tiebout sorting. Fernandez (2001)
shows that if parental human capital and community human capital are complements in
producing educational quality, sorting will occur. This model builds on Fernandez and
Rogerson (1996), in which sorting affects educational quality only through the composition
of voters. They also show that families will sort by type, causing an inefficient equilibrium.
Epple and Romano (2000) show that families will sort among schools in a multi-school
district. Nechyba (1996 & 2000) models voucher plans directly, using models incorporating
peer effects, competitive effects, housing markets, and a heterogenous public sector. With
competitive effects and pre-sorting across public districts, these models show higher benefits
and lower risks from vouchers relative to Epple and Romano’s or Caucutt’s models.

A large literature has examined the decision to attend a private school. Long and Toma
(1988) find that this decision is influenced by family factors such as income, parental educa-
tion, race, and religion, as well as local market factors such as availability of private schools,



tuition, and public school quality. Lankford and Wyckoff (1992 and 1995) find generally
similar results after matching student data with local or census data to evaluate school qual-
ity in the alterative sector. Figlio and Stone (2001) find that flight to private schools is
influenced by public school quality, and by community factors such as crime. These existing
patterns of private school enrollment have recently been used to inform the cream-skimming
debate. Lankford and Wyckoff (2001) construct an empirical model of public/private choice,
then use that model to simulate voucher-induced sorting. They find that “switchers” to
the private sector have higher socio-economic status than the average public school student.
However, the overall change in public-school composition is modest, particularly in terms of
academic effort and achievement.

* * * *

This paper presents several innovations in the understanding of cream skimming. The
accounting framework presented, although straightforward, provides a rigorous way to think
about the scale of possible cream-skimming effects. While most simulations like Epple &
Romano and Caucutt (as well as empirical studies like Lankford & Wyckoff 2001) implicitly
assume that the public sector is made up of one large school, this paper examines the
implications of a heterogenous public sector. Finally, the strength of the peer effect is
critical to estimates of cream skimming, and simulations must either assume or estimate the
strength of this externality. This paper simply asks, “given within-school heterogeneity, how
strong would the peer effect have to be?”

2 Mathematical Framework

2.1 Components of the Cream-Skimming Effect

Peer effects are commonly modeled in the following way. Peer quality is a uni-dimensional
measure. Achievement is a function of individual characteristics, school characteristics aside
from peer quality, and the average peer quality at the school (Qs):

Achievementsi = δi + γs + α[Qs] (1)

where i indexes individuals and s indexes students.

In line with most of the cream-skimming literature, α is here assumed to be positive.
Some studies, however, suggest this may not always be the case1. Equation (1) specifies
a linear relationship between Qs and Achievementsi. This approach serves to simplify the
de-composition of the cream-skimming effect. The linearity assumption will be relaxed in
the empirical calculations, to allow for the possibility that the departure of the last high
peer-quality families has more impact than the loss of infra-marginal families.

1Cullen, Jacob, & Levitt (2003)



This paper distinguishes between true peer effects - arising between students in the
classroom - and parent effects, brought about by the presence of high-income or highly
educated parents. However, it will henceforth refer to both effects as “peer” effects.

When some group of families leave due to increased choice, Achievements will change
due to two effects: a composition effect, and a peer effect. By restricting attention to those
who stay in the public sector, this paper will focus on the peer effect only. This effect can
be modeled as:

∆Achievementstayerssi
= [δi + γs + α[Qspost−sort]

− [δi + γs + α[Qspre−sort]

= α[∆Qs]

(2)

After skimming, the change in the Achievement of those left behind is given by the change
in average peer quality multiplied by α, which represents the strength of the peer effect.

We can further de-compose2 ∆Q:

∆Q = [share who leave][Qstayers −Qleavers] (3)

yielding:

∆Achievementstayers = α[share who leave][Qstayers −Qleavers] (4)

Equation (4), which shows that the cream skimming effect is a function of i) the difference
between leavers and stayers, and ii) the share who leave, will be the key to analyzing claims
about the strength of cream-skimming.

2.2 A Reduced-Form Model of Sorting

A framework is also needed to understand who sorts out of their current schools. Providing
a utility-function based model of school choice would not only be beyond the scope of this
paper, but would also be redundant in light of several existing models (Goldhaber (1996),
Nechyba (1996 & 2000), Epple & Romano (1998), Lankford & Wyckoff (2001)). Instead,
a more reduced-form model of sorting will be developed, which will both shed light on the
distribution of “leavers” and be flexible enough to handle several different kinds of sorting.
This model can be thought of as an application of the Roy model to the public-private school
choice.

2See Appendix A for details.



Suppose that the families within a given school have the following distribution of peer
quality:

Qi ∼ N(µQ, σ2
Q) (5)

Every family also receives a benefit from attending private school, which is an increasing
function of Qi:

Bi = λQi + εi (6)

where λ ≥ 0 and ε ∼ N(0, σ2
ε ). This benefit can be thought of as a “taste for private

schooling”.

There is some cost C0 associated with attending a private school. All families for whom
Bi > C0 attend private schools, while the rest attend public schools. A choice or voucher
plan can be modeled as a change in cost to C1, where C1 < C0. This dynamic is illustrated
in Figure 1. The following can be shown3:

1. For any given C0 and C1, if λ > 0, then [Qstay −Qleave] is increasing in σ2
Q

2. If [share who leave | C1] < .5 and λ > 0, then [share who leave] is increasing in σ2
Q.

σ2
ε = 0 represents the “perfect sorting” case, where all families above a certain Q̃ will leave,

while all families below Q̃ will stay. This is the worst-case scenario for cream-skimming.

3 So Is There Any Cream to Skim?

3.1 Within-School Heterogeneity and Simulation Assumptions

Simulations necessarily involve a number of assumptions, and fidelity to real-world parame-
ters must often be sacrificed to improve the model’s performance. However, some common
simulation assumptions can reduce within-school heterogeneity, leading to over-estimates of
the cream-skimming effect.

It has already been shown that within-school variance is critical to the cream-skimming
effect, since it increases [Qstay −Qleave] and [share who leave]. Within-school heterogeneity
is itself increasing in the variance of the overall population, and decreasing in the degree
of sorting among schools. By assuming that all students in the public sector attend one
large school (or many identical ones), Epple & Romano and Caucutt zero out the sorting
component of this relationship. This unambiguously inflates within-school heterogeneity, and
by extension exaggerates the cream-skimming effect4. Second, although simulation studies
have no choice but to derive a synthetic distribution for unobservable “true”ability/peer
quality, within-school heterogeneity will be further inflated if the variance of this distribution
is too high.

Both Epple & Romano and Caucutt model peer effects as operating entirely through
student ability. The analysis presented by this paper treats student ability as an input to
peer quality, but also considers family factors such as parental education and income.

3See Appendix B for details.
4Nechyba avoids this problem by introducing a heterogenous public sector.



3.1.1 Data

The data used for this study come from the National Educational Longitudinal Survey
(NELS88). This dataset consists of a nationally representative sample of students who were
8th graders in 1988. Extensive survey data is collected from the students themselves, from
their parents, and from the teachers & principal at their school. Follow-ups are conducted
every two years thereafter.

The analysis is conducted with the base-year (8th grade) wave, which maximizes obser-
vations. Data on dropouts and college attendance are merged in from the 4th follow-up.

3.1.2 Sorting and Peer-Quality Variance

Both simulation studies assume that all students in the public sector attend one large school.
In reality, at least some of the total variation in peer quality will be between schools, and
therefore would not contribute to the variation within a given school. Table 1 presents the
results of ANOVA decompositions of peer quality variance into between-school and within-
school components. Because cream-skimming is thought to disproportionately hurt families
with lower socio-economic status, this analysis is then repeated to show the overall breakdown
if all schools looked like low-SES schools 5. Low-SES schools tend to have lower within-school
variance, suggesting that the bias introduced by assuming a monolithic public sector is even
greater for exactly the population of most interest.

The results show that even for the full sample of schools, between-school variation ac-
counts for 20-30% of total variation. If all schools looked like low-SES schools, between-school
variation would account for 25% to 45% of total variation. Whatever the overall variance in
peer quality assumed by the simulation studies, students at individual schools face 30-40%
less variance due to sorting.

To get a better feel for the existing degree of sorting, Graphs 1-3 show the proportion
of families with a given characteristic (parent has a BA or higher, for example) at each
of the 900 schools in the NELS88 dataset. Each data point represents one school (unless
several schools share the exact same proportion, as is the case at 0), and schools are ranked
by their proportion. The horizontal distance between data points represents the number
of students at a given school. Thus the curve is implicitly enrollment-weighted. In each
graph, a horizontal line denotes the sample-wide proportion of the given characteristic. This
line shows how the distribution would appear if “high-quality” families were distributed
uniformly. These graphs show that many students already attend schools with extremely
low proportions of “high-quality“ peers.

Table 2 puts precise numbers on the story emerging from these graphs. For the same
binary peer-quality measures, the sample-wide proportion of observations with that measure
is reported in the first column. The next column reports the share of observations who
attend schools with less than the sample-wide proportion of the given quality measure.
For instance, 67% of observations attend schools where less than 30% of students have a
math score above 61 (a uniform distribution of such students would yield 0% in this cell;
a symmetric distribution would yield 50%). The next two columns report the share of

5Low-SES schools are defined as schools where more than 20% of the student body qualifies for free lunch.
See Appendix C for details on the re-calculation based on this group.



observations who attend schools with less than 20% or less than 10% proportions of the
given quality measure. For instance, 24% of observations attend schools where less than
10% of students have math scores above 61. Table 2 indicates that a significant proportion
of observations already attend schools with extremely low proportions of high-quality peers.

These results indicate that, even if most high peer-quality families were to leave their
current schools as the result of increased choice, many schools would see little change in
composition.

3.1.3 Overall Variance in Peer Quality

Finally, consider the ability distribution of the overall population. Since true ability cannot
be measured, and proxies such as test scores suffer from scaling problems, simulation studies
must derive a synthetic distribution. Epple & Romano derive a lognormal ability distribution
by using accepted inter-generational correlations between income and ability, assuming a
steady state, and backing out ability from observed income. Caucutt’s model uses a much
simpler ability distribution: 50% of students are assumed to have an ability level of “1”, while
the other 50% are assumed to have an ability level of “4”. Given that true ability cannot be
measured, these approaches are not inappropriate. However, if the resulting ability variance
is over-estimated, within-school heterogeneity will be artificially inflated.

There is no way to compare the simulated variances to an unobserved “true” variance.
However, suppose that in addition to student ability, income and parental education are a
large component of peer quality. Returning to the first column of Table 26, the sample-wide
proportions of high income and highly-educated families is not large. This translates into
a rather low horizontal line in Graphs 2 and 3: even if equally distributed, “high quality”
peers make up (by these definitions) low fractions of the total. Caucutt’s assumption that
50% of the population is a ”high quality” peer seems especially questionable in this light.
Epple & Romano’s lognormal ability distribution seems much less likely to have “too many”
high-quality peers, although a high variance could still arise if those peers are “too different”
than the mean.

3.2 How Large Must Peer Effects Be?

3.2.1 Empirical Strategy

The analysis in the previous section shows that because of their assumptions about within-
school heterogeneity, simulation studies may significantly overstate the cream-skimming ef-
fect. However, we have yet to put a number on how much smaller the actual effect will be.
Recall that the cream-skimming effect is given by:

∆Achievementstayers = α[share who leave][Qstayers −Qleavers] (7)

The (share who leave) term could be plausibly generated from real-world data and a
sorting algorithm. However, the [Qstayers−Qleavers] term would require a continuous measure
of true peer quality. Likewise, α represents the strength of the peer effect, which is the focus
of difficult research projects in its own right.

6Setting aside the sample-wide proportion of high-scoring students, which is here 30% by construction.



This paper does not attempt to estimate α, nor does it presume to appoint some family
X as the “true” measure of peer quality. Instead, it uses the model,

∆Achievementstayers = β[share who leaveθ] (8)

with the understanding that the leavers are somehow “different” from the stayers. Since,
for example, a ten-percentage-point drop in the proportion of high peer-quality families may
have a larger impact when such families make up 10% of the total than when they make
up 50% of the total, θ allows for a non-linear relationship between ∆Achievementstayers

and [share who leave]. 0 < θ ≤ 1. Calculations are made for θ = 0.25, θ = 0.50, and
θ = 1.00. Selected family characteristics are used to synthetically sort high-quality families
out of their current schools. Several measures of ∆[Achievement] that seem “large” are
then be selected. The final step calculates the peer-effect β that, given [share who leave],
is required to produce ∆Achievement. We can then ask whether this peer-effect β seems
“reasonable” in comparison to other predictors of Achievement.

This approach deliberately avoids making claims about [Qstayers − Qleavers]. This is be-
cause we have no guarantee that a given measure of family quality (parental education, for
example) is a one-for-one correlate for true peer quality. A practical complication is that
most of the dataset’s measures of family quality are categorical in nature, with ordinal but
not cardinal values. This leaves [Qstayers −Qleavers] undefined. Ignoring this term implicitly

wraps [Qstayers−Qleavers] into the β. Such an approach does not bias our calculated β’s, but
does affect their interpretation. In this framework, a β represents the peer effect on achieve-
ment of changing a school from 100% families with a given characteristic to 0% families with
that characteristic. This effect can then be compared to the estimated effect of a 100%-0%
change in some other peer quality measure.

It is possible to get the flavor of α’s calculated using an explicit but questionable [Qstayers−
Qleavers]. As near-continuous measures, student test score and parental education are at least
technically viable candidates for “peer quality”. When we sort families based on student test
scores, for example, we can therefore calculate [test scoresstayers − test scoresleavers]. α is
interpreted as the peer-effect impact of a one-point change in a school’s average test score.

To calculate the required peer-effect β’s, we first choose a discrete margin on which family
peer-quality can be measured. Five binary measures and three interactions are used:

• Whether the parent has attained a BA or higher

• Whether the family’s income is over $50,000

• Whether the student scored above the 70th %tile) on the standardized math test

• Whether the parents expect the student to eventually attain higher than a BA

• Whether the student spends more than 5 hours/week on homework

• The union of parental BA-or-higher and high income

• The union of BA-or-higher and test score above 70th %tile

• The union of BA-or-higher, high income, and test score above 70th %tile.



Binary family peer-quality measures are used to simplify the hypothetical sorting process;
multi-category measures could also be used. The intuition for the interactions is as follows.
The first four measures of peer quality are univariate, but are correlated with one another.
Removing all parents with BA’s or greater also removes many parents with incomes over
$50K. Binary sorting on any one measure may therefore under-estimate cream-skimming if
we think that both the share of parental BA’s and the share of high-income families provide
peer effects. The interactions avoid this problem by very simply removing everyone from
both groups, leaving only those with less than a BA and low income. Similarly, the second
interaction removes parents with BAs and students with high test scores, while the third
interaction removes all three groups.

It is commonly believed that involved parents, who contact the school and lobby for
improved school resources, also provide positive externalities. If so, parents who contact the
school should represent another binary peer-quality variable. However, if parental lobbying
is endogenous, it will not necessarily signal high peer-quality. First, since parents react to
perceived school quality, lobbying may simply signal low school quality. Second, if lobbying
does provide a public good, skimming away the current active parents may induce previously
inactive parents to contact the school, negating the cream-skimming effect. Moreover, as
shown in Walsh (2005), active parents can create negative externalities on some margins, by
capturing a larger share of fixed school resources for their own children. This implies that
the net externality from involved parents is at best ambiguous.

Income ≥ $50K will henceforth be used as an extended example of family peer-quality;
the analysis was conducted for all other family peer-quality measures in an exactly analogous
way.

Schools are sorted by their proportion of a given type - in our example, schools are sorted
by their proportions of high-income families. Suppose that the distribution of high-income
families among schools is represented by Figure 3. To focus on the worst possible case,
further assume that a school choice plan results in perfect sorting. This would mean that
a student either attends a school where no families have high income, or a school where all
families have high income. To implement perfect sorting, the “cutoff” school is found, such
that the number of high-income families below the cutoff (Group B in Figure 4) is equal to
the number of non-high-income families above the cutoff (Group C in Figure 4). Each peer-
quality measure will have its own unique Groups A, B, C, and D. Then, assume that Groups
B and C swap places. Because of the univariate nature of the peer effect (see Equation 9
below), it does not matter which parents go to which new schools. After the sorting, the
only effect that Group C has on Group A is to lower the proportion of high-income families
to zero.

We wish to examine the impact of adverse sorting on those “left behind” in schools that
high peer-quality families have fled. Thus we will restrict attention to Group Aincome in
Figure 4: the non-high-income parents who are now left in non-high-income schools.



Suppose that achievement is determined by:

Achievementmtsi = δi + γs + βmt[% high Q familiesθ
ts] (9)

where m indexes achievement measures, t indexes family peer-quality measures, s indexes
schools, and i indexes individuals.

For example,

Test Scoreincome, si = δi + γs + βtest score, income[% high incomeθ
s] (10)

Abbreviating,

Test Scoreinc, si = δi + γs + βtest, inc[d
θ
s] (11)

where ds = % high incomes

After sorting, each school below the cutoff now has 0% high income, so the drop in %
high income will be equal to the pre-sorting % high income. The change in test score for an
individual in Group Aincome will therefore be given by:

∆Test Scoreinc, si = [δi + γs + βtest, inc(0)θ]− [δi + γs + βtest, inc(d
θ
s, pre−sorting)]

= −βtest, inc(d
θ
s, pre−sorting)

(12)

We want to produce a targeted change in the average test score for people in Group
Aincome. This gives:

∆(Test Scoreinc, Group A) =

[
1

Ninc, Group A

]
ΣsiTest Scoreinc, si

−
[

1

Ninc, Group A

]
Σsi[Test Scoreinc, si − βtest, inc(d

θ
s, pre−sorting)]

=

[
1

Ninc, Group A

]
Σsi[−βtest, inc(d

θ
s, pre−sorting)]

(13)



If the enrollment of school s is given by Es, then equation (13) becomes:

∆(Test Scoreinc, Group A) = Σs

[
(

Es

Ninc, Group A

)(
1

Es

)Σi[−βtest, inc(d
θ
si, pre−sorting)]

]

= −βtest, incΣs[(
Es

Ninc, Group A

)(dθ
s, pre−sorting)]

(14)

That is, the change in average test scores for Group A is−β times the enrollment-weighted
average of % high incomes|Group A, pre−sorting. Solving for βtest, inc gives:

βtest, inc = − ∆(Test Scoreinc, Group A)

Σs[(
Es

Ninc, Group A
)(dθ

s, pre−sorting)]
(15)

The “required peer-effect β’s” are computed according to equation (15)7.

For the test score measure of Achievement, four targets for ∆target[Achievement] are used,
two for math scores and two for reading scores: 1) the differences in test scores that would
move a student from the 50th to the 40th %tiles of the individual test score distributions,
and 2) the differences in test scores that would move a school from the 50th to the 40th
%tiles of the school average test score distributions.

Since different readers will have different definitions of a “large” change, these targets are
presented as guides, rather than definitive classifications of “large”. Given the linear nature
of the peer effect in Equation (1), the reader can simply scale the displayed results to his or
her own definition of large: multiply the required β’s by two to target 2 deciles, or by .5 to
target a half-decile ∆target[Achievement]. The magnitudes of the decile ∆target[Achievement]
are given in Table 3.

A “large” increase in the dropout rate is defined as multiplying the existing average rate
for Group A by 1.2. A dropout rate increasing from 15% to 18%, for example, would be
considered large. A “large” drop in the college attendance rate is defined as multiplying the
existing rate for Group A by 0.8. A college attendance rate falling from 60% to 48%, for
example, would therefore be considered large.

3.2.2 Results

The current degree of within-school heterogeneity will determine the scope in which cream
skimming may operate. If high peer-quality families are widely distributed across schools,
perfect sorting will result in serious drops in % high income (for example) for many schools
below the cutoff. In such an environment, a relatively small β can produce a substantial

7By analogous steps, the calculation of the α’s where (Qstayers −Qleavers) is given by:

αtest, inc = − ∆(Test Scoreinc, Group A)
Σs[( Es

Ninc, Group A
)[(dθ

s, pre−sorting)(Qstayers s −Qleavers s)]
(16)



shift in Group A outcomes. On the other hand, if high peer-quality families are highly
concentrated, schools below the cutoff will start with low proportions of high-income families.
Perfect sorting will therefore result in only modest drops in % high income. In this case, a
large peer-effect β will be required to move Group A outcomes substantially.

β, Test Scores Results for the β analysis, using math test scores as the outcome measures,
are reported in Table 4. These test scores are normed to put the median at 50 points,
with minimums in the low 30’s and maximums in the high 70’s. The first column
in Table 4 reports the share of families below the cutoff who have a given quality
characteristic. The next two columns report the “required peer-effect β’s” for the two
different ∆target[Achievement] measures. The top panel displays results for the actual
distribution of families across schools. The bottom panel calculates what the required
peer-effect β’s would be if high peer-quality families were uniformly distributed across
schools.

An example of how the required peer-effect β’s should be interpreted: How strong
would the peer effect have to be for perfect sorting based on parental BA to drop
Group A math test scores by one decile of the individual score distribution? Changing
a school from 100% parental BA to 0% parental BA would have to drop math scores at
that school by 27 points. Likewise, for perfect sorting on parental BA to drop Group A
math test scores by a decile of the school-average score distribution, the same change
would have to drop math scores by 11 points. These β’s would compare to 14 and 6
points, respectively, if families were distributed uniformly. Note that required peer-
effect β’s increase with the size of the ∆target[Achievement] measure, and decrease with
the share who leave (given here by Group B/(Group A + B)).

The results for reading test scores are described in exactly the same manner in Table
5. These results closely follow the pattern of math-score required β’s.

Are these β’s believable estimates of the strength of the peer effect? If a school’s
proportion of a given peer-quality measure falls from 100% to 0%, these peer-effect β’s
indicate movement in average scores of 4 to 40 test points. This seems large, given
that the test score distribution has a mean of 50 and a standard deviation of around
10. Then again, a shift from 100% parental BA to 0% parental BA (for example)
is itself quite large. To put these coefficients into context, we can compare them to
other predictors of student test scores. Table 8 shows the results of regressing student
test scores on a variety of school- and family-level variables, for the entire sample.
These regressions are not intended to be the definitive, last-word models of education
production functions. They merely give us, for comparison purposes, an order-of-
magnitude estimate of the strength of other test-score determinants.

The first impression from Table 8 suggests that our required peer-effect β’s are larger,
usually by one or more orders of magnitude, than any other predictors of test scores.
A stronger test would be to use Table 8 to evaluate the test-score impact of some
change that is expected to have a large impact on student achievement, and compare
this to our peer-effect β’s. For instance, we can evaluate the impact of both parents
converting their education from BA to high school dropout. For math scores, the test
score would fall by 1.2 point as the parent converted from BA to HS diploma, then



by another 1.1 point as the parent converted from HS diploma to dropout. This gives
a drop of 2.3 points per parent, or a 4.6 point drop overall. Nearly all the required
peer-effect β’s for math score are higher than this effect, and many are two or three
times higher. The only peer-effect β’s that come close to the 4.6 point drop are when
we pick the smaller of our ∆target[Achievement] measures, and assume that a choice
plan will perfectly sort out any parents who have BAs or income above $50K.

The results are quite similar for reading test scores. As shown in Table 8, converting
both parents from BAs to dropouts results in a score drop of 2 ∗ (.7 − (−.8)) = 3
points. The only reading-score peer-effect β in that range comes with the smallest
∆target[Achievement] measure and the assumption that a choice plan perfectly sorts
out any parents with BAs or income above $50K or attainment expectations above
BA.

To conclude, for nearly all definitions of ∆target[Achievement] and peer-quality sorting
measures, the peer-effect β required to make a substantial impact on test scores exceeds
the effect of converting both parents from BAs to high-school dropouts, even if we
assume that a choice plan leads to perfect sorting. If high peer-quality families were
instead equally distributed across schools, the required peer-effect β would roughly
equal the effect of changing parental education, although only for the smallest definition
of ∆target[Achievement].

α, Test Scores Here, [Qstayers−Qleavers] is calculated by using years of parental education
as our measure of peer quality when sorting by parental BA, and math score as our
measure of peer quality when sorting by math score > 61. This permits the calculation
of the required peer-effect α’s, which are given in Table 6. When families are sorted
perfectly on parental BA, the enrollment-weighted average difference between leavers
and stayers is 4.67 years of education. Likewise, when families are sorted perfectly
on whether the student has a math score above 61, the enrollment-weighted average
difference between leavers and stayers is 19.48 points.

An example of how the required peer-effect α’s in Table 6 should be interpreted: in
order for perfect sorting on parental BA to lower stayers’ test scores by one decile of
the individual distribution, a one-year change in a school’s average parental education
must change test scores by 5.7 points. Likewise, for perfect sorting on parental BA to
lower stayers’ test scores by one decile of the school distribution, the same one-year
change in a school’s average parental education would have to change test scores by
about 2.4 points.

Are these results reasonable? Again, we turn to Table 8 to compare these effects to
the other estimated predictors of test score. First consider sorting on parental BA,
and a targeted change of one decile in the individual score distribution. The required
peer-effect α on a one-year change in a school’s average parental education (5.72) is
over four times as large as the effect of converting the test-taker’s parents from high-
school graduates to college graduates (1.2). Since a one-year change in school average
education is four times larger than an four -year change in own-parent education, this
implies that a school’s average education level must be, on a year-by-year basis, 16
times more powerful than an individual’s parents’ education level. When we instead



target a decile in the school distribution, the equivalent effects are (2.4) and (1.3). This
implies that a school’s average education level must be, on a year-by-year basis, about
7 more powerful than an individual’s parents’ education level.

Sorting on student test score yields a more intuitive interpretation. How strong would
the peer effect have to be for perfect sorting on test score to lower stayers’ test scores
by one decile of the individual distribution? A one-point change in a school’s average
score must change an individual’s score by about 1.2 points (through a peer effect, not
composition). Likewise, for perfect sorting on student test score to lower stayers’ test
scores by one decile of the school distribution, a one-point change in a school’s average
score must change an individual’s score by about 0.5 points.

β, Dropout The required peer-effects to raise Group A dropout rates by a factor of 1.2
are reported in Table 7. The same variety of peer-quality measures are used, and
the β’s are again reported for the actual distribution and for a hypothetical uniform
distribution of high peer-quality families. To again interpret by example: in order for
perfect sorting on parental BA to raise the dropout rate by a factor of 1.2, moving a
school from 100% parental BA to 0% parental BA would have to raise the dropout
rate by 28 percentage points.

For the dropout rate, most required peer-effect β’s fall between 15 and 30 percentage
points for a 100%-0% shift in the proportion of high peer-quality families. Again,
to judge whether these are reasonable estimates of the peer effect, we look to other
predictors of dropout rate. Table 9 shows the results of a regression of school dropout
rate on a number of school-level variables. The required peer-effect β’s are significantly
larger than the largest predictor of dropout. They imply that the peer effect would
have to be two to three times stronger than the effect of converting the school’s % free
lunch from 0% to 100%. These required peer-effect β’s would come closer to (but still
surpass) the free lunch effect if high peer-quality families were uniformly distributed.

β, College Attendance The required peer-effects to lower Group A college attendance
rates by a factor of .8 are also reported in Table 7. To again interpret by example: in
order for perfect sorting on family income to lower the college attendance rate by a
factor of .8, moving a school from 100% high income to 0% high income would have to
lower the college attendance rate by 85 percentage points.

For the college attendance rate, most required peer-effect β’s fall between 30 and 100
percentage points for a 100%-0% shift in the proportion of high peer-quality families.
We again look to other predictors of dropout rate in Table 9 to judge whether these are
reasonable estimates of the peer effect. The largest coefficient is again on the school’s
% free lunch, but this coefficient is little more than 1/3 the magnitude of the smallest
required peer-effect β.

These results suggest that, given the high degree of current sorting, peer effects would
have to be unrealistically large for cream skimming to have a noticeable impact on
college attendance rates.



4 Conclusions

This paper presents a simple framework demonstrating that the cream skimming effect is a
function of the share who leave, the difference between leavers and stayers, and the strength
of the peer effect. Both [share who leave] and [Qstayers −Qleavers] are increasing in within-
school heterogeneity. Within-school heterogeneity is itself an increasing function of overall
variance and a decreasing function of sorting among schools.

Empirically, this paper first shows that assuming a homogenous public sector increases
within-school heterogeneity. This unambiguously leads to an over-estimate of the cream
skimming effect. Moreover, if synthetic distributions of peer quality over-estimate variance,
cream skimming will be further exaggerated.

This paper then asks, “given the current level of sorting, how strong would peer effects
have to be to significantly worsen outcomes for those left behind?”. For test scores of those
left behind, I find that the required peer effect would have to be as strong or stronger than the
effect of converting both parents from college graduates to high-school dropouts. The peer
effects required to substantially raise the dropout rate or reduce the college attendance rate
of those left behind are much larger than the largest estimated predictor of these outcomes.
Overall, these results strongly suggest that existing within-school heterogeneity is too low
for cream-skimming to have large effects. This low heterogeneity is driven by two factors -
a low overall share of “high quality” families, and ex-ante sorting of families among schools.
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5 Results

Table 1: ANOVA Variance Decomposition

If All Schools Had w/in School
Full Sample Variance of Low SES Schools

Variance of: Between Within Between Within
Student Math Score .300 .700 .344 .656

Student Reading Score .228 .772 .258 .742
Parent has BA or Higher .259 .741 .462 .538

Family Income > $50K .290 .710 .465 .535
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Table 3: Targeted Test Score Changes

Math Score Reading Score
Decile, Individual Distrib. 3.18 3.19

Decile, School Distrib. 1.32 1.02
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Table 7: Necessary β’s to Increase Dropout Rate by a Factor of 1.2
Or Decrease College Attendance Rate by a Factor of .2

Dropout Rate
Actual Within-School High Peer-Quality Families

Peer-Quality Measure: Heterogeneity Uniformly Distributed

Parent Has BA or Higher .282 .148
Family Income > $50K .224 .120

Math Score > 61 .237 .110
Parent Expects Student > BA .167 .136
Parent BA or Income > $50K .160 .107
Parent BA or Income > $50K .124 .090

or Parent Expects Student > BA

College Attend Rate
Actual Within-School High Peer-Quality Families

Peer-Quality Measure: Heterogeneity Uniformly Distributed
Parent Has BA or Higher 1.040 .549

Family Income > $50K .849 .454
Math Score > 61 .909 .421

Parent Expects Student > BA .695 .565
Parent BA or Income > $50K .535 .357
Parent BA or Income > $50K .363 .263

or Parent Expects Student > BA



Table 8: Comparison: Other Predictors of Test Score

Math Reading

Total School Enrollment -.0008*** -.0007***
(.0003) (.0002)

Class Size -.038*** -.024***
(.015) (.010)

Starting Teacher Salary (1,000’s) -.024*** -.011*
(.008) (.058)

School % Free Lunch -3.368*** -1.547***
(.510) (.368)

School Urban -.139 -.084
(.234) (.162)

School Private -1.583*** .388
(.333) (.251)

School % Single Parents .011 -.002
(.012) (.006)

Student’s Parent has BA (relative to HS Diploma) 1.210*** .815***
(.261) (.205)

Student’s Parent is HS dropout (relative to HS Diploma) -1.104*** -.659***
(.268) (.225)

Student’s Family has Income ≥ $50,000 .189 .213
(.213) (.180)

Student’s Family has ≥ 50 books at home 1.101*** .908***
(.215) (.165)

Student’s Family has a computer 1.345*** .366***
(.163) (.134)

Student’s Parent Expects Student to get > BA 1.260*** 1.008***
(.232) (.176)

N 13,961 13,978
R2 .536 .670

standard errors in parentheses,
clustered at the school level
∗ significant at 10% level
∗∗ significant at 5% level

∗ ∗ ∗ significant at 1% level



Table 9: Comparison: Other Predictors of Dropout, College Attend.
School Dropout/College Attend. Rate Regressed on School-Level Variables

Dropout Rate College Attend Rate

Total School Enrollment .0000 .0000
(.0000) (.0000)

School % Single Parents -.001*** .0025***
(.0004) (.0006)

School Student/Teacher Ratio -.0018 .0018
(.0012) (.0012)

School % in Remedial Reading -.0178 .0334
(.0632) (.0598)

School % Free Lunch .0757** -.1393***
(.0385) (.0424)

School Urban .0029 -.0033
(.0139) (.0598)

School Private .0192 .0303
(.0225) (.0253)

School avg. Math Standardized Score -.0014 .0029
(.0021) (.0025)

School avg. Reading Standardized Score -.0069* .0040
(.0039) (.0043)

N 880 880
R2 .227 .458

standard errors in parentheses,
clustered at the school level
∗ significant at 10% level
∗∗ significant at 5% level

∗ ∗ ∗ significant at 1% level
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Figure 3
Schools Sorted by Share of Families With High Income

Representation; not from actual data

Share w/out 
High income

Share with
High income

one school (width is representative of relative enrollment)

Figure 4
Synthetic “Perfect Sorting” Algorithm:

Find “Cutoff” School such that Area B = Area C

A

B

C

D

“cutoff” s.t. B = C

Figure 5
Perfect Sorting Implemented,

Changes in School Composition Shown

Δ % high inc.   Δ % high inc.         Δ % high inc.             Δ % high inc.
= 0             =  -10%                     = - 30%                   = + 20%



6 Appendices

6.1 Appendix A: Decomposition of ∆(Qs)

If Nt = total pre-sorting, Nv = total leavers, and Ns = total stayers = Nt −Nv, then:

∆(Qs) = 1
Nt−Nv

∑Nt−Nv

i=1 Qi − 1
Nt

∑Nt

i=1 Qi

∆(Qs) = 1
Nt−Nv

∑Nt−Nv

i=1 Qi −
[

Nv

Nt

1
Nv

∑Nt

i=Nv
Qi + Nt−Nv

Nt

1
Nt−Nv

∑Nt−Nv

i=1 Qi

]

∆(Qs) = 1
Nt−Nv

∑Nt−Nv

i=1 Qi−
[

Nv

Nt

1
Nv

∑Nt

i=Nv
Qi + Nt

Nt

1
Nt−Nv

∑Nt−Nv

i=1 Qi − Nv

Nt

1
Nt−Nv

∑Nv

i=1 Qi

]

∆(Qs) =
[

Nv

Nt

] [
1

Nt−Nv

∑Nt−Nv

i=1 Qi − 1
Nv

∑Nt

i=Nv
Qi

]

6.2 Appendix B: Proof Sketch For Sorting Results

Note that with Bi = λQi + εi, σ2
B is given by:

σ2
B = V ar[λQ + ε] = λ2σ2

Q + σ2
ε (1)

if ε is uncorrelated with Q. σB is therefore an increasing function of σQ.

Note that the correlation between Q and B is given by:

ρ =
Cov[Q, B]

σQσB

=
Cov[Q, λQ + ε]

σQ

√
λ2σ2

Q + σ2
ε

=
λσQ√

λ2σ2
Q + σ2

ε

(2)

This implies that ρ is increasing in σQ.

1. See Figure 2 for illustration.

• From (2), ρ = 0 implies that λ = 0. In this case, [Qstay − Qleave] = 0 because
leavers are being drawn randomly.

• ρ = 1 implies that σ2
ε = 0. In this case, [Qstay − Qleave] is maximized, since all

families above a certain Q̃ = C
λ

will leave, while all families below Q̃ will stay.

• Given this relationship between ρ and [Qstay −Qleave], since ρ is increasing in σQ,

[Qstay −Qleave] is also increasing in σQ.

2. See Figure 2 for illustration.

The decision to leave for a private school is given entirely by the relationship between
cost C and benefit Bi. Call FB(B) the CDF of Bi. [share who leave] is then given by:

[share who leave] =
leavers

leavers + stayers
=

(1− FB(C1))− (1− FB(C0))

FB(C0)
(3)



FB(C0), the equivalent of (leavers + stayers), is decreasing in σB. This is because
higher variance in B pushes more mass over the initial threshold C0, reducing the
total public sector enrollment at C0. This gives the result that [share who leave] is
rising in σB. Since σB is an increasing function of σQ, this implies that
[share who leave] is rising in σQ.

6.3 Appendix C: Counterfactual ANOVA

For the full sample, the variance decomposition is calculated from the total sum of squares
(TSS), model sum of squares (MSS) and residual sum of squares (RSS) of an ANOVA of a
quality measure on school id:

Between school variance share =
RSS

TSS
(4)

Within school variance share =
MSS

TSS
(5)

“Low-SES” is defined as those schools where more than 20% of the students qualify for
free lunches. When we extrapolate from the low-SES sample, we are asking “what would
the decomposition look like if we retained the between-school variance from the full sample,
but gave all schools the within-school variance of low-SES schools?” This is accomplished
by calculating:

Between school variance share =
[RSSlow SES

RSSTotal
]

[Nlow SES

NTotal
]

RSSTotal

TSSTotal

(6)

Within school variance share = (1−Between school variance share) (7)
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